Worksheet for 2021-09-01

Conceptual questions

Question 1. Determine which of the following polar coordinates (r, θ) does NOT represent the same point as the other four:

$$
(3,-5 \pi / 4),(3,3 \pi / 4),(-3,-\pi / 4),(-3,3 \pi / 4),(-3,7 \pi / 4)
$$

Question 2. What shape in the $x y$-plane does the polar curve $r=\csc \theta$ describe?

Question 3. One the backside of this sheet of paper, indicate all regions in the given r, θ-grid that correspond to the shaded regions A and B in Figure 1.

Computations

Problem 1. Find the slope of the tangent line to the polar curve $r=1 / \theta$ at the point where $\theta=\pi$.
Problem 2. Find a polar equation $r=f(\theta)$ for the circle centered at the point (a, b) (given in Cartesian coordinates) passing through the origin ${ }^{1}$. What θ interval traces out your circle once?

Problem 3. Consider the portion of the spiral $r=\theta$ with $2 \pi / 3 \leq \theta \leq 5 \pi / 6$. See Figure 2. Compute the area underneath this curve in two ways:
(a) Convert to parametric equations and use methods of $\$ 10.2$.
(b) First compute the area of the region with corners O, B, and D using methods of $\$ 10.4$. Then use that to find the desired area. Hint: Think about the right triangles $\triangle \mathrm{BAO}$ and $\triangle \mathrm{DCO}$.

Figure 2. The setup of Problem 3.

Figure 1. The two curved arcs are parts of circles centered at the origin. All other sides are straight lines.

[^0]

[^0]: ${ }^{1}$ The only circles which have a "nice" polar form are those centered at the origin or passing through the origin.

